THE JOURNAL OF
SWIMMING RESEARCH

CONTENTS

Editor's Preview ... 4

ORIGINAL INVESTIGATIONS

A Biomechanical Comparison of Two Relay Starts in Swimming
D.W. Gambrel, D. Blanke, K. Thigpen, M. Mellon 5

Circadian Rhythms in Power Output on a Swim Bench
T. Reilly, S. Marshall ... 11

BIBLIOGRAPHIC

In Print: Swimming '88
J.M. Stager, J. Lanting ... 15

Author Guidelines ... 24

A publication of the ASCA in cooperation with the USS Sports Medicine Committee
It's called the OSM-6. And Kiefer has it for you.

This rather special attaché case contains a computer, the OSM-6, which automatically times swimming events at all levels. Omega Electronics, a company known throughout the world for its quality products and its flawless timekeeping of the most prestigious sports events: the Olympic Games, World Championships, etc. Request the special documentation on the "OSM-6".

Kiefer Sports Timing Systems
1750 Harding Road, Northfield, IL 60093
(312) 501-4848, 800-322-5448
FAX: 312-501-4565
THE JOURNAL OF SWIMMING RESEARCH

A publication of the ASCA in cooperation with the USS Sports Medicine Committee

PUBLISHER AND EDITOR
Rick Sharp
American Swimming Coaches Association
304 SE 20th St.
Fort Lauderdale, FL 33316

BOARD OF ASSOCIATE EDITORS
Joel M. Stager, Ph.D.
Indiana University
Bloomington, IN 47405

Jack H. Wilmore, Ph.D.
University of Texas, Austin
Austin, TX 78712

David L. Costill, Ph.D.
Ball State University
Muncie, IN 47306

Ernest Maglischo, Ph.D.
California State College, Bakersfield
Bakersfield, CA 93309

John P. Troup, Ph.D.
United States Swimming
Colorado Springs, CO 80909-3760

Cheryl W. Maglischo, Ph.D.
California State University
Chico, CA

William Morgan, Ed.D.
University of Wisconsin
Madison, WI 53705

Ted Becker, Ph.D., R.P.T., A.T.C.
Evert Pacific Industrial Rehabilitation
Evert, WA 98201

Robert E. Schleisenauf, Ph.D.
82 Brambach Road
Starpsdale, NY 10583

REVIEW BOARD
James Counsilman, Ph.D.
Indiana University
Bloomington, IN 47405

ASSOCIATION OFFICERS
Doug Ingrum, President
Southern Illinois University
Carbondale, IL

Peter Dalen, Vice President
University of Southern Calif.
Los Angeles, CA

Chuck Warner, Vice President
Sarasota Y Sharks
Sarasota, FL

Paul Blair
Little Rock Racquet Club
Little Rock, AR

Dick Rannula
Tacoma Swim Club
Tacoma, WA

Dick Hanseal
University of Houston
Houston, TX

Ira Klein
Las Vegas Gold
Las Vegas, NV

Kathy McKee
Dynamo Swim Team
Tucker, GA

Jim Montrella
The Ohio State University
Columbus, OH

Jack Nelson
Fort Lauderdale Swim Team
Fort Lauderdale, FL

Nancy Jean Schlueter
Tempe, AZ

Richard Shoulberg
Germantown Academy
Fl. Washington, PA

Penny Taylor
Baltimore, MO

Nort Thornton
University of California
Berkeley, CA

THE JOURNAL OF SWIMMING RESEARCH is an official publication of the American Swimming Coaches Association in cooperation with United States Swimming's Sports Medicine Committee. The American Swimming Coaches Association (ASCA) is an educational and professional service organization for swimming coaches. Its national office is located at 304 SE 20th Street, Fort Lauderdale, FL 33316. United States Swimming (USS) is the National Governing Body for competitive swimming in the United States. It is a Group A member of the United States Olympic Committee. Its national headquarters are located at 1750 East Boulder Street, Colorado Springs, CO 80909.

COPYRIGHT 1989 American Swimming Coaches Association. It is the policy of the American Swimming Coaches Association to reserve the right to all articles published in this journal. Coaches and swimming researchers are hereby given permission to make single or multiple copies of single articles for personal scholarly use without explicit written permission, providing that no such copies are sold or used in such a way as to substitute for a subscription to this journal. The American Swimming Coaches Association considers it the obligation of any user to acknowledge the authors and THE JOURNAL OF SWIMMING RESEARCH for all use of this material as a reprint or reference and that United States Swimming be acknowledged when use is made of research funded by them.

THE JOURNAL OF SWIMMING RESEARCH entitles the subscriber to 4 issues as they are published (not necessarily quarterly) by the American Swimming Coaches Association from 304 SE 20th Street, Fort Lauderdale FL 33316. Telephone (305) 462-6267. Subscription rates are $55.00 (foreign), $45.00 (Canada & Mexico), and $35.00 (USA). The journal is printed by the Western Newspaper Publishing Co., Inc. of Indianapolis, IN.

Acceptance of advertising material does not imply endorsement by the American Swimming Coaches Association or United States Swimming. Author's opinions expressed in the articles are not necessarily those of the staff and/or Boards of the American Swimming Coaches Association or United States Swimming.

POSTMASTER: Send address changes to THE JOURNAL OF SWIMMING RESEARCH, 304 SE 20th Street, Fort Lauderdale FL 33316.

Vol. 7, No. 2

Summer 1991

3
Editor's Preview

The paper by Gambrel, et al concerns a comparison of two relay starts: the conventional start vs. a “step-start” in which one foot is placed back on the block and brought forward to the front of the block during the initial part of the start sequence. Hypothesizing that this “step-start” mat move the swimmer’s center of mass forward earlier and over a greater distance, the authors conducted a study to determine if there is a performance advantage associated with this “step-start”. The so-called “bottom line” of this study was that the time to reach 10 meters was about seven hundredths of a second faster, on average, when using the step-start. This difference was not statistically significant, meaning that there was greater than 5% probability that the difference was due to chance. One wonders, therefore, if some swimmers in the group were substantially faster using the step-start while others were faster with the conventional start. If this is true, a future study could attempt to identify swimmers who perform better with the step-start and evaluate whether their faster performance is reproducible over several trials. Then, a conclusion might be reached that suggests that some swimmers benefit from using a step-start while others should stay with the conventional start.

Circadian rhythms (or cyclic fluctuations in physiological functions during the day) are well documented for many physiological and psychological functions. Some research suggests swimming performance is also influenced by circadian rhythms with faster performances generally observed later in the day. With this in mind, Reilly and Marshall conducted a study to evaluate whether 30 second power output on a Biokinetic Swim Bench conforms to a circadian rhythm. The findings show the lowest power scores at 6:00 and highest scores expected between about 14:00 and 18:00 (2-6 pm). Certainly these findings should be considered whenever researchers or coaches design a power testing or monitoring program and imply that testing should always be conducted at the same time of day. Although not examined in this study, it would be useful to know if the circadian rhythm in power and performance can be altered by adjustment of the time of day when practices are scheduled and the type of work in these practices. In other words, is it possible to convert an “evening” person to a “morning” person or flatten out the circadian rhythm so that the swimmer’s physiological potential is as great for morning prelims as it is for evening finals?

Rick Sharp
A Biomechanical Comparison of Two Relay Starts in Swimming

DOUGLAS W. GAMBRIEL, M.S.
GTE Service Corporation

DANIEL BLANKE, Ph.D.
University of Nebraska at Omaha

KAY THIGPEN, Ph.D.
University of Nebraska at Omaha

MORRIS B. MELLION, M.D.
The Sports Medicine Center

Abstract
The purpose of this investigation was to identify the mechanical characteristics of the step start in relay competition and to compare this start to a conventional relay start. Seven trained college age males from the University of Nebraska Collegiate Swim Team volunteered to perform eight racing dives, four demonstrating the step start and four demonstrating the conventional start. Although no statistically significant differences (p < .05) were found for any of the parameters, a comparison of the group means indicated that when swimmers performed the step start, they had the longest block times and the largest horizontal velocities. The angle at take-off and the path of the center of mass (COM) varied to a greater extent between subjects when using the step start. A slightly longer flight distance also resulted from using the step start. However, group means for the flight times remained the same. It was concluded that the step and conventional starts are very similar in their performance parameters. It was further concluded that the step start at its present level of development is as good as the conventional start for relay competition.

Introduction
Over the years competitive swimmers have utilized various nutrition regimens, training methods, stroke techniques, starting styles and turning techniques to improve their racing performance. These activities influence an individual’s racing time by hundredths of a second, which may be the difference between winning and losing, or even breaking a world record. Competitive swimmers have also used a variety of starting techniques to improve racing times.

Specific rules govern the relay events. The freestyle and medley relay teams are comprised of four swimmers, each swimming one-fourth of the prescribed distance. The first swimmer must abide by the rules governing the start for the individual events. The remaining swimmers may be in motion at the start, but must have at least one foot in contact with the starting platform at the time the preceding swimmer finishes.

For those competing in individual events and for the first member of a relay team a good start is primarily the responsibility of the swimmer on the block, assuming the starter follows the rules established by the N.C.A.A. However, in relay events, the responsibility of a good start for the second, third, and fourth team members is shared between the incoming and outgoing swimmers. The incoming swimmer’s responsibility is to finish in a predictable and practiced manner which is obvious to the outgoing swimmer.

Over the past two years coaches from the University of Nebraska at Lincoln have developed a different relay start. This starting technique was coined the “step start” because it was descriptive of the actions of the lower extremities prior to take-off. As the incoming swimmer approaches the wall the swimmer atop the starting platform assumes a position in which the legs are staggered, with the toes of the front foot curled over the front edge of the platform and the back foot positioned to the rear of the platform. The swimmer’s knees are slightly flexed,
with the neck and trunk inclined in a forward and downward position. In this position the center of mass (COM) is placed over the back foot. The initial movement of the swimmer is to thrust the rear foot forward to a position adjacent to the front foot. This begins the forward movement of the COM. Once the foot secures a firm contact with the platform the knees, ankles, and hips extend, while the arms move forward and upward driving the COM over the surface of the water.

Some coaches believe the step start moves the swimmer’s COM earlier in the start and over a larger distance. This could result in a greater velocity of the COM as the swimmer’s feet leave the platform.

As the swimmer becomes more competitive, the importance of reducing the overall time of an event becomes apparent. The ability to improve a relay racing start is considered important to competitors seeking to reduce the overall relay time. To this date, racing starts have been analyzed on only an individual event basis, leaving relay event starts unresearched. The purpose of this investigation was therefore to identify the mechanical characteristics of the step start in relay competition and to compare this start to a conventional relay start.

Methods

Subjects

The subjects for this study were seven college age males with at least eight years of competitive swimming experience. All were members of the University of Nebraska at Lincoln swimming team. All of the swimmers had previous experience with both conventional and step starts. All subjects had been taught the step start by Keith Moore (assistant coach for the Nebraska swimming team) and were currently using this start in relay competition while using the conventional start for individual competition.

Experimental Procedure

Subjects were scheduled for one testing session. Upon arrival each subject provided informed consent in accordance with the procedures required by the Institutional Review Board of the University of Nebraska. Each subject was then weighed and had his height measured. In order to control the effect of learning and fatigue in the testing session each subject was randomly assigned to one of two starting orders (step start first or conventional start first). The assignment was made in accordance with the sampling without replacement procedure as described by Keppel (6). Prior to testing, each subject was read a script of specific instructions. After listening to the instructions, the swimmers were asked to warm up as they would prior to any competition. Subjects were randomly divided into two groups. One group consisted of four swimmers and the other consisted of three. Each subject performed eight trials, four demonstrating the step start and four demonstrating the conventional start. A trial consisted of a swimmer in the water swimming the crawl stroke at full speed to the end of the pool at which time a subject from atop the starting block dove and swam (approximately three arm strokes) to a bulkhead. Each subject was instructed to complete all four trials of the start chosen in the randomization before performing the other start. The subjects rotated within their group, first from the pool deck to the starting block, then to the water. In the event of a false start, the trial was repeated. This rotation continued until all eight trials of the subjects within the group were completed.

Instrumentation

High speed cinematography was used to determine the swimmer’s movements. A LoCam, model 51, 16mm camera with a 25mm F1.4 lens was mounted on a tripod and leveled. The camera contained an internal timing light generator set to mark the edge of the film at 100Hz. The camera was located at a distance of 16.1 meters from the center of the swimming lane. At this distance the starting position atop the block and entry of the subject’s fingertips into the water were completely within the field of view of the camera. The camera was positioned perpendicular to the swimming lane at a point halfway between the swimmer’s position at take-off and water entry. The position of the camera remained consistent for all trials. The camera was loaded with Kodak 7277 4x reversal black and white film and was set to operate at 100 frames per second. A trial identification marker and one meter length reference were also included in the camera’s field of view. Lighting consisted of the natatorium ceiling lights and four high intensity Pallite VIII lamps with an output of 2400 watts each.

The processed film was displayed on a Lafayette Data Viewer rear projection system. The frame rate and scale factor were calculated from the film. X and Y coordinates for 17 anatomical landmarks were recorded every other frame (two hundredths of a second) beginning with the fortieth frame prior to take-off and ending at water entry.

Parameters Measured and Calculated

Block time was the time from the incoming swimmer touching the wall to the time the subject’s feet left the starting block.

Center of mass was determined by segmental analysis derived from X and Y coordinates of 17 identified anatomical landmarks.

Flight time was the time elapsed from the frame in which the subject’s feet left the platform to when his fingertips made water entry.

Time to 10 meters was the time from the subject’s feet leaving the platform at take-off to the subject’s fingertips contacting a touchpad secured to a bulkhead 10 meters from the front edge of the starting block.
Angle of the COM at take-off was the angle determined by plotting the position of the COM at take-off and two hundredths of a second after take-off related to the horizontal.

Height of the COM at take-off was determined by measuring the vertical distance from the surface of the water to the COM at take-off.

Height of the COM at water entry was determined by measuring the vertical distance from the surface of the water to the COM at water entry.

Horizontal velocity of the COM at take-off was determined by measuring the horizontal distance the COM traveled from take-off to two hundredths of a second after take-off and dividing this value by the elapsed time.

Statistical treatment

Individual parameter values were calculated utilizing the mean of three of the four trials for each subject. In situations where all four trials were readable, the three trials demonstrating values closest to the mean time to 10 meters for all four trials were chosen for analysis. The mean and standard deviation for all three trials for each subject were calculated for all parameters. The mean and standard deviation for all subjects combined were then determined for each parameter. For each parameter, a dependent t-test was used to compare mean scores for the step start and conventional start. All comparisons were evaluated at the .05 level of significance.

Findings

Basic descriptive characteristics of each swimmer are presented in Table 1. The mean ± standard deviation for height and mass for the group were 190.38 ± 9.87cm and 80.32 ± 8.45kg respectively. Table 2 contains the group means, standard deviations, and t-test values for all the parameters of the step and conventional starts. Although no statistically significant differences (p < .05) were found for any of the parameters, a comparison of the group means indicated that the swimmers using the step start had the longest block times and were also able to accumulate the largest horizontal velocities. No differences were noted between group means for the height of the COM at take-off and water entry. Although the angle at take-off of the COM for the step and conventional start indicated no significant difference, the standard deviation of the step start was larger than that of the conventional start.

Although not significant, group means also indicated that time to 10 meters could be covered faster using the step start than using the conventional start. Group means further reveal that a slightly larger flight distance was covered using the step start than the conventional start. However, group means for the flight times were the same.

In addition to finding no significant differences be-

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Step X ± SD (N = 7)</th>
<th>Convention X ± SD (N = 7)</th>
<th>t*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block time (sec.)</td>
<td>0.16 ± 0.08</td>
<td>0.13 ± 0.06</td>
<td>1.691</td>
</tr>
<tr>
<td>Time to 10 meters (sec.)</td>
<td>2.96 ± 0.16</td>
<td>3.03 ± 0.15</td>
<td>-1.699</td>
</tr>
<tr>
<td>Height of COM at Take-off (meters)</td>
<td>1.40 ± 0.07</td>
<td>1.39 ± 0.05</td>
<td>1.268</td>
</tr>
<tr>
<td>Height of COM at Water Entry (meters)</td>
<td>0.76 ± 0.06</td>
<td>0.76 ± 0.06</td>
<td>.370</td>
</tr>
<tr>
<td>Horizontal Velocity of COM at Take-off (m/s)</td>
<td>4.57 ± 0.28</td>
<td>4.56 ± 0.15</td>
<td>.108</td>
</tr>
<tr>
<td>Horizontal Velocity of COM at Water Entry (m/s)</td>
<td>4.38 ± 0.19</td>
<td>4.30 ± 0.07</td>
<td>1.108</td>
</tr>
<tr>
<td>Flight Time (sec.)</td>
<td>0.42 ± 0.05</td>
<td>0.42 ± 0.04</td>
<td>.190</td>
</tr>
<tr>
<td>Flight Distance (meters)</td>
<td>1.81 ± 0.19</td>
<td>1.78 ± 0.18</td>
<td>.835</td>
</tr>
<tr>
<td>Angle at Take-off (degrees)</td>
<td>55.93 ± 1.43</td>
<td>55.81 ± 0.81</td>
<td>.163</td>
</tr>
</tbody>
</table>

*DF = 6
**p < .05
between block times for the step (0.16 ± 0.08 sec.) and conventional (0.13 ± 0.06 sec.) starts, the times were similar to those reported in the literature (0.18 ± 0.04 sec.) for the grab start (3). The height of the COM at water entry for both the step and conventional starts was 0.76 ± 0.06 meters. These values were somewhat larger than the values (0.59 ± 0.08 meters) found by Guimarães and Hay (2) in a study involving twenty-four high school students demonstrating the grab start.

Figure 1 represents the path of the COM from takeoff to water entry for each of the seven subjects utilizing the step start. Figure 2 represents the path of the COM from takeoff to water entry for each of the seven subjects using the conventional start. No significant differences were found between the height of the COM at takeoff and water entry. However, the path of the COM for subjects using the step start varied to a greater extent than the path of the COM for subjects using the conventional start.

No differences were found between the horizontal velocity at takeoff for the step start (4.57 ± 0.28 m/sec.) and the conventional start (4.36 ± 0.15 m/sec.). Both scores were similar (4.33 ± 0.61 m/sec.) to those found in research for the grab start by Havriluk and Ward (5).

Figure 3 and 4 illustrate the horizontal velocities from takeoff to water entry for each subject using the step and conventional start, respectively. It would appear that the horizontal velocities of the COM for the subjects using the conventional start varied to a greater extent than the horizontal velocities of the COM for the subjects using the step start.

No differences were found between the flight times for the step start (0.42 ± 0.05 sec.) and the conventional start (0.42 ± 0.07 sec.). Flight times were found to be somewhat slower than flight times found in the whip (0.34 ± 0.03 sec.), grab (0.30 ± 0.04 sec.), and swing (0.31 ± 0.06 sec.) starts among Canadian Olympic male swimmers (5).

All seven subjects when using the step start began with their COM higher than when using the conventional start. Four of these subjects continued to maintain a higher COM throughout the dive. Of the four subjects that maintained a higher COM throughout the entire dive, only one was able to project his COM further using the step start. Three subjects demonstrated a lower COM at two different locations in the path. One subject demonstrated a lower COM prior to takeoff while the
other two subjects demonstrated a lower COM from take-off to water entry. The two subjects that maintained a higher COM from take-off to water entry also projected their COM further from the starting block.

Six of the seven subjects using the conventional start were able to maintain larger horizontal velocities of the COM from take-off to water entry. Whereas, only one of the seven subjects using the step start was able to maintain a somewhat larger horizontal velocity of the COM from take-off to water entry. However, this same subject was able to produce a longer flight time using the conventional start.

Discussion

Research on racing starts in swimming has been limited primarily to individual events. Therefore, information on the start for the second, third, and fourth swimmer in relay events is very limited. Previous studies on racing starts have focused on traditional starting methods with the swimmer assuming a desired, motionless position atop the starting block prior to the official starting the race (1,2,3,5,7). The present study resulted from a need for quantitative information on relay starts that could be used as a baseline for comparisons and further study.

No significant differences were found between any of the parameters measured. However, mean times indicated that the longer the subject's block time, the greater the horizontal velocity and the longer the flight distances. In addition, no significant differences were found between the means for the angle at take-off of the COM. Therefore, it is not surprising that the mean flight distance between the step and conventional starts also displayed no significant difference. The slightly longer flight distance achieved by the subjects when using the step start was most likely due to the flight path since no difference in the take-off angle of the COM existed.

Plots of the horizontal velocities of the COM of each subject for the step and conventional starts illustrated an increase in velocity until take-off and then a slight decrease until water entry. This was expected since the subjects applied force against the platform in an attempt to move forward, but after leaving the platform they could no longer apply force and therefore slowed down.

The paths of the COM for the step and conventional start were similar for all seven subjects. The path of the COM prior to take-off demonstrated large differences in the height of the subject's COM until take-off. This is not surprising since all seven subjects exhibited a higher COM atop the starting block prior to take-off when using the step start. However, the height of the COM at take-off and water entry revealed no significant differences between starts. The path of the COM was consistent for both the step start and conventional start. However, the path of the COM for subjects using the step start varied to a greater extent than the path of the COM for the subjects using the conventional start. This fluctuation in the path of the COM when using the step start is felt to be a direct result of the subjects moving their COM over a larger distance atop the starting block during the stepping phase in which the rear foot moved to a position adjacent to the front foot.

Time to 10 meters also showed no significant differences between starts. Time to 10 meters is not only dependent upon horizontal velocity, but also upon water time. Water time was calculated by subtracting flight time from the time to 10 meters. This time resulted from the distance the subject traveled in the water and the subject's velocity in the water.

This research indicated that the step start at its present level of development showed no noticeable superiority to the conventional start. However, the results of this research indicated that it is at least as good as the "conventional" start. This finding was in fact exciting in that a new innovative technique was found to be as effective as the current standard. With years of refinement and practice, the step start may someday surpass the conventional start.

Summary

The purpose of this investigation was to evaluate the mechanical characteristics of the step start in relay competition and to compare this start to a conventional relay start. Seven college age males, all members of the University of Nebraska at Lincoln swimming team, were subjects for this study. All subjects were familiar with both starts and used both in competition. The subjects were free of any physical disability or ailment that might have caused any impaired performance. All subjects completed one testing session consisting of four filmed trials of both the step and conventional starts. High speed cinematography (100 frames/second) was used to film the subjects from a side view. Nine parameters were obtained from the processed film using standard cinematographic procedures. The results were summarized as follows:

1. No significant difference was found between the starts for block time. The values were within normal ranges from other studies (5).
2. No significant differences were found between the starts for the heights of the COM at take-off or at water entry.
3. No significant differences were found between the starts for either horizontal velocities at take-off or at water entry. Values of these parameters agreed with values presented for horizontal velocities at take-off and water entry from other studies involving college age male swimmers (5).
4. No significant differences were found between starts for flight time or flight distance.
5. No significant difference was found between starts for the angle at take-off.

Conclusions
For the sample of subjects in this study, the following conclusions were made:
1. The data indicated that the step and conventional starts for relay competition are very similar in their performance parameters.
2. From the results of this study the step start is as good as the conventional start for relay competition.

References
3. Hanauer, E.S. The grab start. *Swimming World and Junior Swimmer*, 1967, 8, 4-5, 42.

Dear Coach,

As the ASCA Certification program has evolved, one of the greatest needs that I have noted, is a basic text for new coaches that can rapidly “bring them up to speed” on many of the swimming education items that experienced coaches take for granted.

To meet this need, ASCA has developed “VITAL READING FOR SWIMMING COACHES”. This book selects the best from the 20 year history of the ASCA WORKS clinic, and puts them together in loose-leaf form, so the coach can add to the collection with ease. Periodically, we plan to recommend inserts.

The contents of the book are below, and speak for themselves. We think it is an invaluable collection. Please consider it for yourself, or as a primary text for your assistant coaches. I really believe that, as the title says, this is Vital Reading.

Best Regards,

John Leonard

VITAL READING FOR SWIMMING COACHES

Section 1 - Organization, Formation and Operation of Swim Teams
Chapters: “Advice Competitive Swimming - How to Get Them Started” Pat Hogan
“Motivation and Development of Age Group Swimmers” Joe Deeken
“Age Group Program Organization and Structure” Terry Laughlin
“Coach - Parent Relationships” John Leonard
“Organization and Administration of a Swim Team” James F. Atlee
“How to Build a Swim Team From Scratch” Chris Davis and Jon Fraser

Section 2 - Teaching Skills
Chapters: “Cognitive Factors in Teaching Motor Skills to Swimmers” Jerry Thomas
“Fundamentals aren’t Everything...” They’re The Only Thing” Harry Heisel
“Key Teaching Points” Frank Keefe
“The Art of Language in Coaching” Tia Wolny
“Stroke Correction” Mitch Ivey

Section 3 - Training
Chapters: “A Comprehensive Multi-Year Training Program” Orjan Hadsten
“Age Group Dryland Training” Kris Kalb
“Training Games and Gimmicks” Bob Steele

Section 4 - Psychology
Chapters: “Winning Thinking”
“Goal Setting for Goal Achievement” Dick Hanmano

Section 5 - The Coaching Profession
Chapters: “What It Takes to Be A Successful Swimming Coach” Peter Deland
“Time Management for Swimming Coaches” Jeff Goforth
“Organizing for Personal Success” Don Swartz
“Taking the Leadership Role” Doug Ingram
“The Search for a Philosophy of Coaching” Doc Counsilman

Ordering Information for “VITAL READING”

YES! I would like a copy of “VITAL READING FOR SWIMMING COACHES” I have enclosed a check for $19.95 plus $4.00 for Shipping and Handling made payable to ASCA. (UPS Ground Delivery) (Total $23.95)

Please ship to: Name _____________________________
Mailing Address: ______________________________________

We Cannot ship to PO Boxes!

ASCA—304 S.E. 20th St., Ft. Lauderdale, FL 33316
Circadian Rhythms in Power Output on a Swim Bench

THOMAS REILLY, PH.D.
SHARON MARSHALL, B.S.C.

Centre for Sport and Exercise Sciences
Liverpool Polytechnic
Byrom Street
Liverpool L3 3AF
England

Abstract

This study investigated the circadian variation in power output of swimmers and its relation to the circadian rhythms in body temperature and subjective alertness. The mean and peak power output of 14 competent swimmers was measured at 6 equidistant times of day using a swim-bench. Measurements were made pre-exercise of alertness, pulse rate and rectal temperature. Significant rhythms were observed in pulse rate (peak 14:00 hours), body temperature (peak 18:00 hours) and alertness (peak 18:00 hours) (all P < 0.001). Mean and peak power output showed corresponding circadian rhythms (peak 18:00 hours) with amplitudes 11 and 14%, respectively, of their mean values. Performance on the swim bench was not linked with subjects' preferences for morning or evening work. Findings have implications for the scheduling of swimmers' training regimens according to time of day.

Key terms: alertness, anaerobic performance, circadian rhythms, swim-simulator.

Introduction

Circadian rhythms reflect cyclical fluctuations in physiological functions over the course of the solar day. The major rhythms are those of body temperature and the sleep-wake cycle. The classical rhythm conforms to a sine wave or cosine function with a peak in the afternoon or evening and a trough at about mid-sleep. There is evidence that many human performance measures display circadian variation close in phase with the curve in body temperature (8).

Swimmers use the early morning and the evening in implementing their training programmes. It is likely that the propensity to undertake strenuous training loads does vary according to time of day with the main physiological rhythms. These rhythms could affect the intensity of the physiological stimulus presented during swim training. This would apply also to the stimulus provided in dry land training to improve muscular strength and power, using swim benches for example.

There is evidence that swimming performance is influenced by the time of day. Rodahl et al. (13) found that swimmers produced significantly faster times over 100 m at 17:00 hours compared with 07:00 hours in 3 out of 4 strokes studied. More frequent sampling at 5 different times of day between 06:00 hours and 22:00 hours demonstrated that performance improved steadily throughout the day (2). Sinnerton and Reilly (14) also showed that swimmers performed better in the evening at 17:30 hours than in the morning at 06:30 hours. Performances in front crawl were 3.6 and 1.9% faster for 400 m and repeated 50 m swim trials, respectively. This time of day effect was apparent through three experimental days of partial sleep deprivation.

There is also experimental support for the existence of circadian rhythms in a number of factors that constitute components of swimming performance. These include flexibility (4), muscular strength (15) and tolerance of high exercise levels (9). There are suggestions also that performance is affected by individual preferences for morning or evening work (6).

This study was conducted in order to:-

i) establish the existence of circadian rhythms in power output on a swim bench;

ii) examine the relation between circadian variation in performance and rhythms associated with body temperature and the sleep-wake cycle;

iii) determine the effect of circadian phase type on performance using the swim bench.
Methods

Fourteen subjects, 7 male and 7 female, aged 23 ± 3 years, volunteered to take part in the study after giving written informed consent. All had experience of competitive racing and were currently engaged in swim training. All subjects were familiar with training using a swim-bench (Isokinetics Inc., Albany, CA) prior to commencement of the study.

Each subject undertook an all-out test for 30 s on the “Biokinetic Swim Bench” (Isokinetics Inc.). The test sessions were conducted at six different times of day: 02:00, 06:00, 10:00, 14:00, 18:00 and 22:00 hours. Test administration was balanced so that no two subjects undertook the test in the same order. Between each test session a rest period of at least 24 hours was enforced and all tests for each subject were completed within a 3-week period. Diet, sleep and physical activity were controlled according to the procedures of Reilly and Brooks (11). Laboratory temperature was relatively constant at 18.3 (± S.D. = 0.4) °C for the duration of the experiment.

At each test session the 30 s test was performed twice, full recovery being allowed before the subject undertook the second test. Subjects had a standard warm-up prior to the test and in a preliminary visit had been familiarised with the test protocol. The test was performed with the speed setting at “4” on the swim bench. The peak power (over the first 5 s) and mean power (over the 30 s) were noted by monitoring the display on the swim-simulator. The modification of the standard anaerobic power and aerobic capacity test had previously been used with swimmers (10).

Prior to the exercise tests the subject relaxed for 10 min in a seated posture. At the end of this period pulse rate was measured by palpation, the mean of three 30 s periods being recorded. Subjective alertness was rated by subjects on a visual analogue scale, graded between alert and drowsy at the two extremes. Pre-exercise rectal temperature was recorded using a digital clinical thermometer (Phillips, Eindhoven). Circadian phase type was determined by questionnaire according to Horne and Ostberg (6).

Data were first analysed using a two-way analysis of variance. Where the effect of time of day was significant data were then analysed using cosinor analysis (7). Where the subjects effect was significant, values were corrected by normalising each subject’s data to the lowest observation. These procedures are in accord with the guidelines used by Akerstedt (1).

Findings

A significant circadian variation was observed in pulse rate, rectal temperature and subjective alertness (P < 0.001). The subjects effect was significant in the pulse rate data (P < 0.05). The acrophase (peak time) of the rhythms was computed to occur at 16:10, 16:50 and 18:10 hours for pulse rate, rectal temperature and subjective alertness, respectively (Table 1).

Mean (P < 0.001) and peak (P < 0.01) power values showed significant circadian variations (Table 2). When corrected for individual differences, highly significant rhythms were evident in both variables. The acrophases of the rhythms were 16:23 hours and 16:13 hours for mean and peak power respectively.

The responses to the circadian phase questionnaire disclosed there were 4 morning types, 4 evening types with 6 of the subjects being intermediate. There were no apparent differences in rhythms between the 3 groups. Both morning and evening types had similar mean heart rates which peaked at 14:00 hours. A similar result was noted for rectal temperature, highest values being observed at 18:00 hours. The rhythm in alertness appeared to be relatively constant from 14:00 hours onwards in the

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (± SD) values for pulse rate, rectal temperature and alertness at some different times of day (n = 14)</td>
</tr>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Pulse rate (beats min⁻¹)</td>
</tr>
<tr>
<td>Rectal temperature (°C)</td>
</tr>
<tr>
<td>Alertness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean and peak power output during a 30 s all-out test on a ‘Biokinetic Swim Bench’ (n = 14). Values are mean (± S.D.) for each of the 6 times of day.</td>
</tr>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Mean Power (W)</td>
</tr>
<tr>
<td>Peak Power (W)</td>
</tr>
</tbody>
</table>
morning group whilst continuing to rise in the evening group, the difference between the 3 sub-groups was not significant (P > 0.05). Although the subjects with morning preferences had poorer anaerobic performances than the other two sub-groups, no differences were noticed in the variations occurring in power output during the day.

Discussion
This study showed that power output in short-term all-out efforts on a swim-simulator did display circadian rhythmicity. This applied to both peak power and mean power indices. The amplitude of the rhythm was 14% of the mean value for peak power and 11% of the mean power average. This variation with time of day is greater than that observed for arm (12) and leg exercise (5) on the Wingate Anaerobic test. It lends support to the view that the amplitude of circadian rhythms increase with the complexity of motor tasks.

The rhythms in power output were closely in phase with those of pulse rate, rectal temperature and alertness. In agreement with earlier work (11) the highest values for pulse rate were noted 4 hours earlier than those for rectal temperature. In the present study the 95% confidence limits of the three marker variables overlapped and the phase lead of pulse rate over the others was non-significant (P > 0.05). In view of the phase concordance of pulse rate, body temperature and alertness, the rhythm with the greatest influence on the fluctuations in power output could not be identified. According to Bergh and Ekblom (3) anaerobic power declines by 5% for every 1 °C drop in body temperature. It would appear that central factors such as are reflected in the rhythm in alertness contribute along with the body temperature rhythm to the circadian rhythm in power production on the swim bench.

There was no indication that the circadian rhythm in power output was influenced by circadian phase type. Conclusions have to be tentative in view of the small numbers that could be classed as morning types and evening types. Swimmers expressing negative attitudes towards morning training may have a need for external motivation by their coaches to help them achieve their training targets.

In summary, the circadian rhythm in power output on a swim bench was closely related to the circadian curve in body temperature and in alertness. Thus the performance rhythm is linked with both physiological and psychological factors. The existence of these rhythms should be taken into account by swimmers and their coaches when planning strength and muscular power training programmes.

References
Bring Out The
COMPETITOR
In Your Swimmers

With Competitor® Swim Products -
The Six-Time Choice Of The Olympics.

Competitor® Racing Lanes
The official choice of the Olympic Games in 1968, '76, '80, '84, '88, and again in 1992, in Barcelona, Spain. Competitor Racing Lanes are designed for optimum control of the water surface. Each lane comes completely assembled and is offered in a variety of colors and sizes to meet any need. Variable lengths can be obtained from the same lane using the disconnect assembly.

Stor-Lane® Reel
The Competitor Stor-Lane® Reel accommodates up to 540 feet of racing lanes on a durable, lightweight, electroplated aluminum frame that supports a thermo-formed plastic reel assembly. Five-inch swivel casters with individual brakes make movement around the pool deck easy.

Competitor® Pace Clocks
Available in 31-inch and 15-inch models with electric or battery power. Octagonal shape allows for maximum visibility when in use. Pace Clocks are water-resistant with a clear Plexiglass lens protecting the clock face and hands. 31-inch clocks come in white; 15-inch clocks come in white or red.

Competitor® Pool Accessories
- Starting Blocks
- Kick Boards
- Leg Floats
- Arm Trainers
- Ear Plugs
- Nose Clips
- Goggles
- And More

Call 1-800-888-SWIM (7946) today for a FREE color brochure highlighting the entire Competitor line of swim products.

Division of Richey Industries, Inc.
PO. Box 928 • Medina, OH 44258-0928
(216) 725-4997 FAX (216) 722-3288
In Print: Swimming '88

J.M. Stager, Ph.D.
J. Lanting, M.S.
Human Performance Labs
Dept. of Kinesiology
Indiana University
Bloomington, Indiana 47405

Abstract
The idea of a scientific journal specifically dedicated to enhance communication between scholars interested in competitive swimming, and the professional practitioners in the sport, i.e., coaches, originated from the late Keith Sutton. His vision was that JSR would serve the American and indeed the international swimming community by acting as an educational forum without a compromise in scientific rigor. In this way, JSR would serve researchers seeking an attentive, appreciative audience as well as serve those who wish to apply recent results obtained from the frontiers of science. One of Keith's original concepts is actualized by that which follows, a bibliography of publications relevant to the swim community. It is hoped that this bibliography continues to represent a useful guide to information relevant to coaches, swimmers and researchers. As always, suggestions which may improve the usefulness of this index to the swimming community are welcome.

Biomechanics

General

Carter, B. (1988). Simple pleasure . . . chronically ven-
tilated children... swimming and sunbathing are simple and effective therapies. *Nursing-Times*, 84(13), 38-39.

Neff, C. (1988, Nov. 1). In the future, it's back to the surface. (international amateur swimming federal outlaws David Berkoff's innovative underwater backstroke). *Sports Illustrated*, p. 30(1).

Motor Control

Nutrition

People

Neff, C. (1988, Feb.). With his trunks on tonight . . . (Texas' Shaun Jordan loses his suit and brings excitement to swim meets; entertaining swim meets continued by Dallas Morning News Classic). *Sports Illustrated*, p. 79(2).

Pool hustlers from the G.D.R. (East German swim team; Olympics special section). (1988, Sept.) *Time*, p. 61(1).

Riggin, A. (1988, Oct-Nov). Why we weren't in the fast lane. (former Olympian swimmers and divers explain how the sports have changed; also includes articles on swimming times and on Aileen Riggin). *Women's Sports and Fitness*, p. 30(3).

Physiology

Pool Maintenance and Design

Psychology

tionship. *Journal of Sport & Exercise Psychology, 10*(1), 45-61.

Sports Medicine

Testing Techniques

Training

Paragon Now Offers 16 Different Starting Platforms For Any Pool Need.

Here Are Just Four.

Why 16 platforms? Because today's different pool designs and pool profiles plus changing competitive regulations require different platforms. And only Paragon offers such a wide array of choices - including the new "Varsity" models designed for 18' height over water.

Today's coaches demand a professional platform to give their swimmers a competitive edge. Paragon units now feature a new high-density polypropylene platform. Its unique linear grooved surface and underside gives competitors a fast, firm, non-slip grab start and take-off.

These superbly designed, handsome platforms meet USS, NCAA, FINA and NFSHSA requirements. Catalog on request.
POWER RACK™
Features:
• Adjustable weights in 5 lb. increments
• Quantifiable power ratio.
• Train the ATP energy system
• Low friction ball bearing pulleys
• Sturdy aircraft cable roping
• Portable
• Engineered quality

Jim Born
17 time N.C.A.A. Champion

TOTAL PERFORMANCE INC.
P.O. Box 1268
562 South Illinois Avenue
Mansfield, Ohio 44901
Phone (419) 526-1010
FAX (419) 526-0261

STAR PERFORMERS...

FOR HEALTHY EARS AND EYES

ALCOHOL FREE!
SWIMMER'S EAR
recommended by physicians and pharmacists

Star-Otic
ANTIBACTERIAL ANTI-INFLAMMATORY EAR SOLUTION

The only eyewash specifically designed with the swimmer in mind! Provides quick and soothing relief from irritating "Swimmers Eye" due to wind, saltwater, sand and sun or chlorinated water.

#1 OTC preparation for prevention of Swimmer's Ear. Non-sensitizing, non-allergenic, safe for daily use!

Stellar Pharmacal Corp.
1990 NW 44 Street, Pompano Beach, Florida 33064-8712 • Phone: (305) 972-6060
The JOURNAL OF SWIMMING RESEARCH is an official publication of the American Swimming Coaches Association. Manuscripts dealing with original investigations, comprehensive reviews, or brief reviews on the science of swimming and closely related topics, will be considered for publication. This journal is a researcher-to-coach publication. Information presented in the manuscript must be receiver-oriented. Authors submitting manuscripts to this journal must verify in writing that its contents represent original unpublished material that is not under consideration for publication elsewhere.

EDITORIAL STYLE. The author should submit three copies of a manuscript, typewritten and double-spaced with 1.5" margins on all edges. A short running title should be repeated at the top right corner of each page followed directly below by the page number. Authors should avoid all information which will identify human subjects. English will be the language of this publication. As a general rule, only standardized abbreviations and symbols should be used. The first time an uncommon abbreviation appears it should be preceded by the full word or name it represents. The author is encouraged to refer to the Publication Manual of the American Psychological Association, 3rd edition, for editorial style concerning punctuation and abbreviations, construction of tables and figures, presentation of statistical symbols or mathematical equations, and use of standard units of measurement.

Manuscripts should contain the following elements placed in the following order:

1. TITLE PAGE. The title page should include the manuscript title, names of author(s) and their academic degree(s), name(s) and institution(s) where work was performed, an address and telephone number for editorial correspondence concerning the manuscript.

2. ABSTRACT. The abstract (200 words or less) should summarize the study's purpose, methodology, results and conclusions. It should include a brief summary statement that provides some interpretation of the findings and their implications to the on-deck coaching and training of swimmers.

3. INDEX TERMS. A list of three or more words or short phrases not included in the title should be appended to the abstract.

4. TEXT. The text should contain separate sections for:
 a. Introduction. This section should state the purpose, the rationale, and the essential related literature.
 b. Methodology. This section should include a clear description of the experimental subjects and their controls. The description of the methodology should provide enough detail for others to duplicate the study. References should be provided for established methods and statistical procedures. Non-established methods and statistical procedures should be supported with rationale.
 c. Findings. The findings presented in the text, tables, and figures should follow a logical and parallel sequence. The statistical significance of appropriate results should be acknowledged.
 d. Discussion. This section should emphasize the study's important and original aspects while avoiding a repeat of the data presented in the findings section.
 e. Applications. The author should provide conclusions and possible applications suggested by their data. This section of the manuscript is of particular importance to the mission of the journal. It should be at least 500 words in length and provide simple, laymen terms, an interpretation of the findings and implications to the on-deck coaching and training of swimmers. Where appropriate, examples of how the findings may be applied and/or how the findings may lead to further research questions are encouraged.

4. REFERENCES. The list of references should not exceed 20. They should be listed alphabetically by the last name of the author and typed double-spaced. The notation of the references in the body of the paper should be numbered in parentheses, one reference to a number. Journal articles should contain the last name of the first author, followed by initials, initials and last names of each co-author, title of article (first word only capitalized), name of journal (as abbreviated in the INDEX MEDICUS published by the Library of Congress), volume, inclusive pages, and year. An example would be: Karlsson, J., L. Nordesjo, L. Jorfeldt and B. Salin. Muscle lactate, ATP and CP levels during exercise and after physical training in man. J. Appl. Physiol. 33:199-203, 1972.

5. TABLES AND FIGURES. Each table must be typed double-spaced on a separate sheet and numbered consecutively, beginning with Table 1, and have a title or caption. Tables should not duplicate information in the text or in figures. Figures should be sharp, unmounted glossy photographic prints not larger than 8.5 x 11 inches. They should be numbered consecutively with Arabic numerals. Each figure must have a legend; they shall be grouped in numerical order and typed double-spaced on a separate sheet.

BRIEF REVIEWS. Authors are encouraged to submit manuscripts suitable for Brief Review papers that can be used for educating the non-expert on a particular issue or problem. Brief reviews will also be solicited by the editor or editorial board, however, solicitation is not guarantee for acceptance.

EXCHANGE FORUM. Readers and/or authors can submit a topic for discussion by experts in a particular aspect of swimming science. The question posed must be typewritten, double-spaced and no more than 500 words in length. The question posed must be clearly developed and narrowly defined. A response or responses will be solicited by the editor or editorial board. Both the original question and the response(s) will be published pending approval by the editorial board.

LETTERS TO THE EDITOR. Letters concerning an article that appeared in a recent issue of the journal must be typewritten, double-spaced, and include an informative title. Three copies should be submitted. They should be short (no more than 500 words). Letters are reviewed by the appropriate associate editor. If a letter is found acceptable, a copy will be sent to the author of the original article, if applicable; and the author will have an opportunity to provide a rebuttal or additional information that will be considered for publication with the letter.

ADDRESS
Address all correspondence to THE JOURNAL OF SWIMMING RESEARCH; ASCA, Editor’s Desk; 304 SE 29th Street, Fort Lauderdale, FL 33316; (305) 462-6267. Authors submitting manuscripts which are accepted for publication will receive a one year subscription to THE JOURNAL OF SWIMMING RESEARCH.

THE JOURNAL OF
SWIMMING RESEARCH
ASCA, Editor’s Desk
304 SE 20th Street
Fort Lauderdale, FL 33316